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Forced shear flows in a thin layer of an incompressible viscous fluid are studied 
experimentally. Streak photographs are used to obtain the stream function of 
vortical flow ,patterns arising after the primary shear flow loses stability. Various 
flow characteristics are determined and results are compared to the stability theory 
of quasi-two-dimensional flows. The applicability of the quasi-two-dimensional 
approximation is directly verified and the possibility of reconstruction of the driving 
force from the secondary flow pattern is demonstrated. 

1. Introduction. What is a quasi-two-dimensional flow ? 
Strictly two-dimensional (2D)  flows, as solutions of hydrodynamic equations, 

constitute a class of great importance and variety. In particular, a well-developed 
theory is that of the 2D stability of shear flows. Though it has a number of possible 
applications in nature, technology and laboratory experiment, one cannot directly 
apply strictly 2D theory to real flows. The reason is that real 2D flows are either 
subject to 3D instability, or their two-dimensionality is maintained by external 
factors that also affect stability. Most commonly these are solid boundaries (bottom 
and/or top), perhaps together with general rotation, transverse magnetic field, etc. 
This leads to the breakdown of strict two-dimensionality, in that velocity 
components now depend strongly on the transverse coordinate due to boundary 
layers arising on the bottom and top. However if the transverse (‘vertical ’) velocity 
is small compared to the horizontal velocity, this vertical dependence can be 
parametrized via an ‘external friction’ term, -hv,  in the right-hand side of the 2D 
equation of motion ( u  is the horizontal velocity, and h the decrement of the external 
friction) : 

( p  denotes the ratio of pressure to density). We shall identify flows governed by this 
equation as quasi-two-dimensional (Q2D).  This equation can be derived for various 
hydrodynamical systems via expansion in some small parameter. Consequently the 
expression for h depends on the underlying physics. For instance, h w 2v/h2 
(Rayleigh friction) for a thin non-rotating fluid layer of thickness h and viscosity v, 
A = (Ov)i/h (Ekman friction) for a layer rotating at angular velocity O about a 
vertical axis, and it is given by a similar formula for electrically conducting layer in 
a vertical magnetic field (Hartmann friction). In  fact, all three cases can be unified 
by writing 

A = v/h2,, 

where h2, = Qh2 for a thin layer and h2, = h6, 6 being the Ekman or Hartmann layer 

a , u + ( u . v p  = -vp--~u+j- (1) 
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thickness: 6 = 6, = (v/Q)' or 6 = 6, = cB-'(pv/cr); ( c  is the speed of light, B is the 
magnetic induction, p is the fluid density and cr its conductivity) ; see Dolzhanskii, 
Krymov & Manin (1990) and Dolzhanskii & Manin (1990). 

A fundamental distinction from the strictly 2D situation is that Q2D flows are 
controlled by two dimensionless parameters, namely the traditional Reynolds 
number R, = UD/v and the Reynolds number in terms of the external friction 
R, = U / h D  (where U and D are the characteristic length and velocity scales of the 
flow). Dolzhanskii (1987) has shown that in the case R, 4 R, there is no dependence on 
R,, and the internal viscosity term (vV2v) can be neglected, a t  least in stability 
considerations. Moreover, the condition of quasi-two-dimensionality itself is 
equivalent to the above inequality, R, < R,, which is the reason why this term is not 
included in (1). Experimental results on the stability of Kolmogorov shear flow were 
explained through incorporation of the external friction in Gledzer, Dolzhanskii & 
Oboukhov (1981). Equation (1) was used to  describe experimental results by Niino 
(1982) and Niino & Misawa (1984) (Ekman friction, see also Busse 1968), and by 
Rabaud & Couder (1983) and Chomaz et al. (1988) (Rayleigh friction). Both cases are 
in a sense degenerate, since R, is equal to R, in experiments where the flow is driven 
by differentially rotating parts of the bottom of a tank filled by fluid. Dolzhanskii 
(1987) has also demonstrated the structural instability of strictly 2D theory when 
small external friction is involved. Other results concerning nonlinear stability and 
experimental simulations obtained to  date can be found in the reviews by Dolzhanskii 
et al. (1990) and Dolzhanskii, Krymov & Manin (1991). 

This work has several closely connected but distinct goals. First, we present a 
method for experimental flow field assimilation which yields a 2D stream function 
stored in a computer memory. With such a data set a t  hand one can obtain all 
relevant information provided that not too much numerical differentiation is 
required. Second, we demonstrate that the assimilation algorithm is able to  fill 
'blank spots' devoid of original data. Next, we use the real data obtained in the 
experiment to calculate the external friction coefficient A and the profile of the force 
which maintains the flow (this is also a problem of practical importance in dynamic 
meteorology). This is done on the assumption that the flow is governed by the Q2D 
equation (1). So when consistent results are obtained this is also a check of the 
validity of the Q2D approximation itself. 

2. Experimental set-up 
The experimental flow was generated in the MHD-type apparatus described 

previously in Dovzhenko, Novikov & Oboukhov (1979). A set of circular magnets 
(figure 1 a)  created an axially symmetric magnetic field with its vertical component 
changing sign at certain radii (5.8, 10.4 and 15.2 cm). A circular pan with a relatively 
thin fluid layer was placed on top of the magnets. A solution of CuSO, in water 
(p = 1.07 g/cm3, v = 0.012 cm'/s) was used. A direct electric current could run 
between two circular electrodes mounted concentrically in the pan, resulting in an 
Ampere force acting on the fluid in the azimuthal direction. The radial profile of the 
force depended on the magnetic field profile (which could be controlled to some 
extent by changing the clearance between magnets and the pan), and on the position 
and shape of electrodes. The velocity profile generated by the force applied also 
depends on the depth of the fluid layer. 

To produce a simple shear we used cylindrical electrodes placed inside and outside 
the 'zero line' (R, = 10.4 cm) of the magnetic field. The sine-type velocity profile was 
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FIGURE 1. Sketch of MHD devices for generation of flows in (a) circular geometry 
and ( 6 )  Kolmogorov flow. 

created at  layer depth h = 10 mm and electrode radii ri = 5.8 cm and ro = 15.0 cm. 
The tanh-type profile was studied in the channel with r, = 6.0 cm and ro = 14.8 cm 
in the range 3 mm < h < 5 mm. In addition to cylindrical electrodes, we used rings 
placed flat on the bottom of the pan, a t  ri = 7.5 cm and ro = 8.5 cm, to obtain 
unidirectional jet flow not confined by lateral boundaries (the fluid could move above 
the ring electrodes). The thickness of the Hartmann boundary layer 8, always 
exceeded 1 m, so that the fluid motion had no effect on the magnetic field (recall that 
8, % h is the condition for no B t  v feedback). 

A similar device was used to generate Kolmogorov flow in a rectangular domain. 
A cuvette of dimensions 27 x 17.6 cm with fluid layer of depth 4 mm was placed on 
a set of four magnetic rubber bands, each 27 cm long, so that the magnetic field was 
periodic in the transverse direction with four periods (4 x 4.4 cm). Electric current 
ran between two electrodes placed at  the lateral boundaries of the cuvette (figure 1 b ) .  

Flow was visualized with aluminium powder floating on the surface of the fluid. 
Pictures of the flow were taken from above and streak photographs were processed 
as described in $4. 

3. Principal features of experimental flows 
We provide here a brief description of previous experimental results obtained by 

Dovzhenko & Krymov (1983), Krymov (1989) and Krymov & Manin (1989) as 
background for the new results. (See also the review by Dolzhanskii et al. 1990, where 
experimental results by different authors were interpreted in terms of the Q2D 
stability theory.) Characteristic flow velocities obtained in the experiment ranged 
from 1 mm/s to several cm/s. With small forcing the flow was laminar and axially 
symmetric. Since all flows under study were of shear type (had an inflexion point) 
they lose stability at a specific magnitude of forcing. According to the Q2D theory, 
the onset of instability is determined by R,, the critical value being approximately 
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FIGURE 2(a) .  For caption see page 71 1. 

independent of the velocity profile and of the order rW; x 6-8. I n  fact, the stability 
criterion is given by 

inviscid increment of 2D instability = decrement due to the external friction. 

Here the left-hand side is determined from the Rayleigh equation and depends 
weakly on the flow velocity profile, while the right-hand side is the h coefficient, 
non-dimensionalized by a characteristic flow length and velocity, which gives 

Loss of stability leads to a circular train of vortices taking the place of the axially 
symmetric flow (see figure 2). (For the Kolmogorov flow a ‘parquet floor’ vortex 
pattern develops.) At first the vortices are weak and of equal size, and the 
dimensionless wave number a. = n,D/Ro is of the order 0 . 4 4 . 5 ,  in accordance with 
the linear theory (no is the total number of vortices). With increasing forcing, the 

ADIU = R;1. 
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FIQURE 2 ( b ) .  For caption see page 711. 

vortices first grow in intensity and then in size, while their number decreases. 
Oscillations can also start, as well as hysteresis and non-uniqueness phenomena. This 
is, however, beyond the scope of the present work. Here we deal with relatively small 
supercriticalities, s = R,/rW,* - 1 5 3, when the flow is stationary and unique at  a 
given Iw,. It should be noted that in processing experimental data we used 
s = I/I*- 1, where I is the net electric current through the fluid layer, and I* its 
critical value. In  our experimental configuration I is proportional to the Reynolds 
number based on the Ampere force. 

4. Processing of streak photographs 
In order to improve and facilitate interpretation of experimental results we used 

a computer technique similar (though not identical) to that described in Sommeria, 
Meyers & Swinney (1988). It consisted of the following steps. 
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FIGURE 2 ( c ) .  For caption see facing page. 

(i) The beginning and end of each streak in a photograph of the flow was recorded 
in a disk file with the aid of a digitizing tablet. 

(ii) The whole experimental domain (i.e. the ring ri < r < r,) was divided into no 
(the number of vortices) sectors, 27ck/n0 < @ < 27c(k+ l)/n,, k g  [0, no - 11, each sector 
containing one vortex, and streaks corresponding to the kth vortex were rotated 
through the angle -2nk/no, so that all vortices were superimposed. 

(iii) Each streak was treated as a velocity vector; a velocity field v(r ,  $) was 
obtained by interpolation on a regular grid with two-dimensional cubic splines. For 
circular flows the grid was rectangular in the ( r ,  R,  @)-plane and cylindrical 
coordinates ( r ,  9) were used in subsequent calculations. 

(iv) The vorticity field < ( r , + )  was obtained by numerical differentiation of the 
velocity, g = V, x V .  

(v) The stream function Y ( r , $ )  was determined by numerically solving the 
Poisson equation 

v2yy=- 5 (2) 
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(iii) 

FIGURE 2. (i)  Flow pattern, (ii) stream function topography (cm2/s), and (iii) pressure topography 
(cmz/s2), for flow with (a) sine-type velocity profile at s = 1.0, ( b )  tanh-type velocity profile at 
s = 0.86, (c) jet flow at s = 1.85, and ( d )  Kolmogorov flow at s = 0.53. 

with boundary conditions Y = 0 at r = ri and Y = J ,  at r = To, where J, is the total 
flux, 

4 = [;v,$dr, 

averaged over the whole ring; a periodicity condition on Y was imposed at  q5 = 0, 
2n/n,. 

This procedure differs from that of Sommeria et al. in that we introduced step (ii) 
based on the axial symmetry of the flow studied. The effect of this step is to remove 
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random variations in different vortices and to drastically increase streak density, 
providing much more precise and detailed results. In  fact, we had about 200(r3000 
tracks per single (‘ composite ’) vortex yielding spatial resolution of about 2-3 mm. 

Almost every step adds a certain amount of error in the data. Errors in locating 
streaks, uncertainty of interpolation on ‘blank’ domains (where there are no or few 
visualizer particles) and amplification of errors in numerical differentiation are 
possibly the most significant. However, step (v) improves the net result. 

To show this, note that the interpolated velocity field has non-zero divergence 
due to  errors. On the other hand, the resulting stream function describes non- 
divergent 2D flow. How is i t  related to  the experimental velocity field u,? Let us 
seek a non-divergent field ut, being the best fit for u, in the sense of least squares, 
jj Iu, - u,I2 dx dy --f min. On substituting ut = V x ( Yez) into the above integral and 
varying Y we obtain equation (2). So (2) yields the best non-divergent fit to the 
interpolated experimental velocity field, and step (v) does reduce measurement and 
interpolation errors (at least those which bring about divergence). Note that errors 
due to  numerical differentiation are also reduced, as the stream function is obtained 
by double integration of the vorticity. An example of flow patterns and corresponding 
streamlines (Y = const) is provided by figure 2 (the photos in figure 2 are but 
illustrative examples; they provide no distinct streaks). One can see that the 
aluminium powder is inhomogeneously distributed on the fluid surface. For instance, 
for the sine-type profile flow (figure 2 a )  there are no valid tracks in the small vortices 
near the inner channel wall. The calculated stream function, nevertheless, reveals 
these vortices. 

For Kolmogorov flow we used only a central zonc of 6.4 x 17.6 cm (6.4 cm is the 
longitudinal period of the vortex pattern). Step (ii) (superposition of periods) was left 
out in this case because of lack of translational symmetry. Only in the central zone 
is the flow free of distortions due to endwalls of the cuvette. The total number of 
tracks in this zone was about 4000-5000. 

5. Mean velocity, mean vorticity and Reynolds stresses 
Transverse profiles of mean azimuthal velocity (v+) and Reynolds stresses (v v ) 

(a, /3 stand for r or $, angular brackets denote an average over $) are presented in 
figure 3. This figure demonstrates that the (v+ v,) component which characterizes the 
mean azimuthal transfer of radial momentum, is concentrated about inflexion points 
of the mean velocity profile. Note that the difference in velocity profiles between sine- 
type and tanh-type flows, though comparatively small, causes an essential difference 
in the profiles of (v+v+) and (v+v,). For the tanh-type flow the concentration is more 
pronounced. The (v, v,) component, which can be treated as the squared amplitude 
of the vortex disturbance, is spread widely around the inflexion point. 

I n  accordance with weakly nonlinear theory and with previous experimental 
results of Krymov (1989), the Reynolds stresses depend linearly on supercriticality 
s = R,/R,*- 1 (see figure 4). This corresponds to a subcritical instability and is 
consistent with the Hopf bifurcation theory, according to which the disturbance 
amplitude is proportional to the square root of the controlling external parameter. 
The slope of the above-mentioned linear dependence was shown in Manin (1989) to 
be highly sensitive to  the velocity profile of the primary flow. The present 
experimental data appear to be consistent with this result. Normalized slopes 
yap = (d/ds) (V,V~)/U*~ are presented in table 1, where U* is the critical velocity of 
the primary flow. They vary significantly for different flows, but ratios of these values 

a !  
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FIGURE 3. Profiles of mean velocity (-), and Reynolds stresses (v$vd) (---), (v,v,) (. . . . . . )  
and (v,vJ (----), for (a) sine-type flow at s = 1 ,  ( b )  tanh-type flow at 8 = 0.86, (c) jet flow at 
s = 1.85, ( d ) ,  and Kolmogorov flow at s = 0.53 
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FIQURE 4. Dependence of amplitude of Reynolds stresses (v,v,> (O), 
( x ), on supercriticality s for Kolmogorov flow. 

(+), and (v,vy> 

Flow Sine Tanh Jet Kolmogorov 

h (cm) I .o 0.5 
u' 0.22 0.73 
7 r r  0.23 0.067 
% -0.153 - 0.0675 
7++ 0.17 0.07 

97 Yo 93 % 
0.038+0.004 0.14f0.02 

p, 
K 1.7 f 0.2 1.6f0.2 

0.7 
0.315 
0.117 

0.013 

0.043 k0.002 
0.96f0.04 

-0.0722 

98 Yo 

0.4 
0.22 
0.264 

-0.252 
0.37 

98 % 
0.234 f 0.02 
1.7k0.15 

TABLE 1 .  Measured parameters for the various flow types 

(such as r r s / y r9 )  vary only weakly. So qaa can be taken as a measure of the squared 
amplitude of the disturbance. 

The disturbance amplitude manifests itself not only in vortex intensity, but also 
in the size and shape of vortices. At larger Reynolds numbers the vortices are more 
rounded and more tilted. In  Krymov (1989) it was shown that the slopes of the 
dependence of width and tilt of vortices can in the same sense serve as a measure of 
amplitude. Note also that there is no correlation between these values and the depth 
h of the fluid layer. 

Profiles of mean azimuthal velocity and mean vorticity are presented in figure 5 
for the tanh-type flow a t  various s. The dashed line was obtained by direct 
measurement of tracks rather than from the stream function a t  s = 0. It is close to 
the calculated velocity profile a t  small supercriticality s = 0.14 (solid curve 1). This 
figure illustrates the spreading of the shear zone with increasing s under the reverse 
action of vortices on the primary flow. This spreading is more pronounced in the 
vorticity profiles (figure 5 b ) .  The shear zone (the domain of high vorticity) widens a t  
the expense of nearly constant velocity domains, so that the vorticity amplitude 
increases with Reynolds number more slowly than the velocity amplitude. 
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r (cm) 
FIQURE 5. (a) Mean velocity and (b) vorticity profiles for the tanh-type flow a t  s = 0.14 (curves 1); 
0.43 (2) ; 0.57 (3) ; 0.86 (4). Dashed line on (a) show the mean velocity profile a t  the critical Reynolds 
number obtained by direct measurement of tracks rather than the stream-function calculation. 

6. The harmonic analysis of disturbances 
Stream functions obtained from streak photographs are detailed enough to 

provide more delicate characteristics of the flow. Recall that weakly nonlinear theory 
is not restricted to treatment of a purely harmonic disturbance, but also accounts for 
its interaction with the second longitudinal harmonic and with weak distortion of the 
primary flow (both resulting from interaction of the principal wave with itself). Write 
the stream function of the secondary flow in the form 

= Yo(Y) + $(x,  Y), 
$(x ,  Y) = Re c $'r(Y) exp (ikao 2)  

(for simplicity this is written in Cartesian coordinates as if the flow were rectilinear). 
Then $l is the principal harmonic and $2 is the second harmonic. Hodographs of $l 

and $ z  for different flows are presented in figure 6 (by a hodograph of $(y) c C we 
mean a plot of the imaginary part vs. the real part of $ as an implicit function of y). 
Dashed lines correspond to experimental data, while solid lines were obtained by 
numerical integration of Rayleigh-type equations arising in the course of the 
realization of the Stuart-Watson weakly nonlinear scheme (Stuart 1960 ; Watson 
1960). Note that theoretical curves correspond to perfect velocity profiles U = sin y 
and U = tanh y, rather than to experimental profiles. This is because the theoretical 
procedure requires information on higher derivatives (up to the third) of U(y), 
which is not available from the experiment. We are interested here only'in the 
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FIGURE 6. Hodographs (Im+(y) vs. Re+(y)) of (u,  c) first and ( b ,  d )  second harmonic of 
disturbances for (a, b )  tanh-flow and (c, d )  sine-type flow. Dashed lines correspond to experimental 
data, solid lines to weakly nonlinear theory (Manin 1989). 
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FIGURE 7. Dependence on supercriticali^ty s of the squared amplitude of the first harmonic of 
disturbances (0) and the amplitude of the second (+), for tanh-type flow. 

shape of these hodographs, so every curve is normalized by the condition r.m.s. 
(Im2 + Re2) = 1. 

Figure 6 illustrates that the theoretical and experimental hodographs are 
‘topologically ’ similar. Note also that the difference in velocity profiles affects the 
second harmonic more strongly. The shape of the hodograph loop is in fact quite 
meaningful. Let us express the Reynolds stress (v,vy) as a sum of terms, each due 
to a specific harmonic, $k. It can be easily shown that the sign of every term is 
determined by the sign of (dldy) (arg !,hk(y)). But the sign of the Reynolds stress in 
turn determines the sign of energy transfer -from mean flow to vortices or the 
reverse, because v, = - (v,.v$)/U’ determines the ‘eddy viscosity ’. This quantity was 
shown by Dovzhenko & Krymov (1983) to be almost constant across the flow. Now 
we can analyse contributions of harmonics to the energy exchange between the mean 
flow and vortices. Figure 6 demonstrates that while the first harmonic only takes 
energy from the mean flow, the second harmonic partially returns it (reverse loops 
in hodographs). 

According to weakly nonlinear theory, the amplitude of the second harmonic 
should be proportional to the supercriticality s, rather than to td (figure 7’). We were 
able to check this only with the tanh-type flow, since in the other cases the second 
harmonic was extremely small, so that almost all the energy of the disturbance was 
contained in the principal harmonic. The average fraction of the disturbance 
‘energy’ (integral of $2) which is due to the principal harmonic is shown in table 1 
as E,l. The smallness of higher harmonics indicates that flow really is weakly 
nonlinear. 

7. Reconstruction of pressure fields 
The pressure field is of interest both in itself and for subsequent data processing. 

Apply the divergence operator to the stationary form of the governing Q2D equation 
( I ) >  

( v - V )  v = -Vp-Av+f  

Taking into account the continuity equation V. v = 0 and assuming the force non- 
divergent, V .f= 0, we obtain the well-known Poisson equation for pressure, 

v2p = 2[u, v ] ,  (3) 
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where square brackets denote the Jacobian, [F ,  GI = F, G,-F, G,. The Jacobian 
[u, v] may be treated (up to a constant factor) as the Gaussian curvature of the stream 
function considered as a surface Y = Y ( x ,  y) in the (x, y, Y)-space. Negative curvature 
corresponds to ' hyperbolic ' streamlines, positive curvature to 'elliptic ' streamlines. 
This may be the reason why isobars reveal vortices better than streamlines (see figure 
2 ) .  

It is essential that only first-order spatial derivatives enter the right-hand side of 
(3), because additional numerical differentiation would make results much less 
reliable. Equation (3) was integrated in cylindrical coordinates with boundary 
conditions of the form arp = v:/r = 0 a t  r = ri, To,  which follows from the radial 
component of the momentum equation (since in the real flow we have v# = 0 a t  
lateral boundaries). The periodicity condition in q5 was also imposed on p .  

The most prominent feature of the pressure field is the depression a t  the centre of 
a vortex. For jet flow, alternating minima and maxima of p reflect the wavy pattern 
of streamlines. For axially symmetric flows there is a systematic rise of pressure from 
the inner to the outer boundary, due to curvature of the primary flow. 

8. Testing the Q2D approximation 
The applicability of the governing Q2D equation (1) is confirmed by its ability to 

predict stability characteristics of laboratory flows, demonstrated by Krymov (1989) 
and Krymov & Manin (1989). Nevertheless it is especially interesting to test it  
directly by immediate substitution of the experimental velocity field into (1). Let us 
rewrite ( 1 )  in terms of velocity components (we again simplify formulae by assuming 
the flow rectilinear; actual calculations for axially symmetric flows were made in 
cylindrical coordinates) : 

u-+v- = --- ap Au+f, 
ax ay ax (4) 

ay a l y  

a Y  ax 
u = - ,  v=----.  

Equation (5) can be used to determine h by taking the pressure term over to the 
left-hand side and calculating the regression coefficient between the left-hand side 
and v, where u, v and p are experimental fields. Owing to measurement errors and 
additional numerical differentiation, the regression analysis yields rather low 
correlation coefficients. But because of the large number of grid points, the overall 
average A value can be considered realistic. The A-independence of the Reynolds 
number for a given flow would be evidence of its correctness. 

In fact the dispersion of h for every flow type a t  various s turned out to be about 
10% or less (see table 1). Moreover, for three flow types (except the jet) A is given 

= 2 ~ v / h ' ,  (6) by 

with K = 1 . 7 k 0 . 2 .  This is strong evidence in favour of the Q2D model. 
The value of the phenomenological parameter K depends critically on the actual 

vertical profile of velocity (in particular, for a Poiseuille vertical profile K would be 
equal to 1 ; see Gledzer et al. 1981). For jet flow, as distinct from other flows, the 
electric current density decreases sharply from the bottom to the free surface. The 
resulting difference in vertical velocity profile leads to a different K value. 
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FIQURE 8. Reconstructed profiles of force (-) and mean velocity profiles (multiplied by A )  

( .  . . . . .), for (a) Kolmogorov flow at s = 0.76 and ( b )  jet flow at s = 0.71 and 2.57. 

Now that h is known we can substitute experimental fields into (4) to reconstruct 
the force. Profiles of force and of mean longitudinal velocity (multiplied by A )  are 
presented in figure 8. Since the flow is stationary, the difference between f and AU 
shows the contribution of nonlinear terms in (4), that is, the reverse action of vortices 
on the primary flow. (We show the results for Kolmogorov and jet flows where this 
contribution affects not only the amplitude of the velocity profile, but also its shape.) 

Figure 8(a)  demonstrates that for Kolmogorov flow the reconstructed force is of 
constant amplitude across the cuvette (as it should be), while the mean velocity is 
lower in the middle where vortices are stronger. For the jet (figure 8 b )  the instability 
causes the mean flow to spread, while the width of the force profile remains constant. 
This is also shown in figure 9 (to determine the width D of a profile we approximated 
it by U =  Uoexp(-(r-Ro)2/D2). 

Figure 10 shows the dependence of the amplitudes off and AU on s for these two 
flows. One can see that the amplitude of the force is proportional to the Reynolds 
number (recall that it is proportional to the net electric current). A t  the same time 
the mean flow velocity dependence changes at  the critical Reynolds number (s = 0) 
because developing vortices take the energy from the primary flow. In table 1 the 
normalized slope of this dependence in supercritical regime is presented, 
U' = (dU/ds)/U*. 

The simplest possible three-mode Galerkin model of Kolmogorov flow (Dolzhanskii 
et al. 1990) predicts completely constant mean flow velocity at  s > 0. The weak 
growth of mean velocity observed in experiments can be related to the presence of 
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FIGURE 9. Width of reconstructed force profile (0) and mean velocity profile (+ ) 
vs. supercriticality for jet flow. 
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FIQURE 10. Dependence of amplitude of reconstructed force ( + )  and mean velocity (multiplied 
by A )  (0) on supercriticality for (a )  Kolmogorov, and ( b ) ,  jet flows. 

second and higher harmonics, since they can partially return energy obtained from 
the principal harmonic back to the mean flow (see above). This is consistent with 
data in table 1 :  the greater the relative amplitude of the second harmonic, the 
greater the slope of mean velocity dependence on s and the smaller the total energy 
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of disturbances (yJ). In addition, it can be shown that the four-mode Galerkin model 
of Kolmogorov flow which takes into account the second harmonic of a disturbance 
yields qualitatively the same behaviour as in the experiment. 

9. Conclusions 
Two principal results of the present work deserve being stated here as conclusions. 
(i) There is direct experimental verification of the quasi-two-dimensional 

approximation (1) for thin-layer viscous fluid motions. The applicability of the Q2D 
approximation follows from the non-dependence of the external friction coefficient A 
(calculated under the assumption of quasi two-dimensionality) on the Reynolds 
number, and from that the A value is given by (6 )  with a unique K for different 
velocity profiles and layer thicknesses. 

(ii) The possibility of reconstructing the force driving a Q2D shear motion has 
been demonstrated. Correct behaviour was obtained for both profile of the force 
(independent of Reynolds number in our set-up) and its amplitude (proportional to 
the net electric current). 

The theory of Q2D flows can be applied to barotropic atmospheric flows (see the 
review by Dolzhanskii et al. 1990). The problem of reconstruction of non-adiabatic 
factors (such as heat and potential vorticity sinks/sources) is urgent in dynamical 
meteorology. The method proposed here cannot be directly applied to the 
atmosphere, for this would require resolution of the vertical structure. However, 
given the data on horizontal fields at  different altitude levels, the procedure could be 
generalized for reconstruction of the right-hand side of the potential vorticity 
transformation equation. 
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